
Website: www.chestysoft.com Email: info@chestysoft.com
csFileDownload Version 2.0 - ASP File Download Component

from Chestysoft

Introduction
This component allows file downloads to be controlled from within an ASP script. This is useful for
restricting access to certain files and for record keeping. The component can load a file from disk on
the server, from a network location or a remote URL and stream the file as binary data through the
Response BinaryWrite command in ASP.

In addition there is an access code generation feature which can be used with the file download
functions. There are also a number of file utility functions available.

The ActiveX file csFileDownload.dll should be registered on the server using REGSVR32.EXE.
Regsvr32 is usually to be found in the Windows System folder, and it runs at the command prompt
using the syntax:

regsvr32 dllname

where dllname is the path and name of the dll to register. Chestysoft has a free utility that performs this
function through a Windows interface. For more information on this, visit the Chestysoft web site, or
follow: www.chestysoft.com/dllregsvr/default.asp

Object Creation

The code:

Set Download = Server.CreateObject("csFileDownload.BinFile") - creates an
instance of the object called “Download”.

In the trial version, use:

Set Download = Server.CreateObject("csFileDownloadTrial.BinFile")

Controlling Downloads
The csFileDownload object controls file downloads by loading the file into memory from wherever it
resides on the server, then streaming it to the browser. This allows code to be run before or after file
transfer enabling form variables to be read, databases to be updated and any other record keeping that
is required. The file to be downloaded does not need to be on a part of the server that is web shared, but
the Internet Guest User must have read permission on that file.

The asp script that controls the download does not return an HTML page. It must have the response
buffer set to true, and the appropriate MIME type set using Response.ContentType. The example in the
next section shows this.

The browser may display the file or it may ask the user if they want to open or save the file. The exact
behaviour depends on the type of browser and its configuration.

The StreamFile Method
The simplest and most efficient way of sending a file to a browser uses the StreamFile method. This
involves setting the FileName property to the physical path of the file, and then using the StreamFile
method to send it to the browser. Here is a sample script:

http://www.chestysoft.com/
mailto:info@chestysoft.com
http://www.chestysoft.com/dllregsvr/default.asp

<%
Response.Buffer = true
Response.Expires = 0
Response.ContentType = "application/x-zip-compressed"
Set Download = Server.CreateObject("csFileDownload.BinFile")
Download.FileName = "C:\download\sample.zip"
Download.StreamFile
Response.End

%>

This case shows a zip file being downloaded, so the ContentType is set accordingly. The FileName
property is set using the physical path on the server. Note that the browser sees this as a binary file and
there can be no HTML output in the same script.

The StreamFile method includes the file name in the header, so most browsers will prompt for the
downloaded file name when saving the file. In the example shown that is "sample.zip". However, some
browsers will use the name of the ASP script instead. A different name can be specified by setting the
PromptName property. The above example could be modified to prompt for the name "newfile.zip":

Download.FileName = "C:\download\sample.zip"
Download.PromptName = "newfile.zip"
Download.StreamFile

The Attachment Property
As well as including the file name in the "Content-Disposition" header, the StreamFile method will
also specify whether the file should be displayed inline or as an attachment. Use the boolean
Attachment property for this and set it to True to show the file as an attachment. The default value is
False, causing the file to display inline. Unfortunately not all browsers interpret this directive, Internet
Explorer will but Netscape will not. See RFC 1806 for more details on Content-Disposition.

Example:

Download.Attachment = true
Download.StreamFile

This will cause some browsers, including Internet Explorer, to give the user a choice of saving or
opening the file.

In summary, the StreamFile method will send a file to the browser. Related properties are FileName,
PromptName and Attachment. FileName is required and must contain the physical path to the file. The
behaviour of any browser or application reading a file streamed in this way can vary and cannot always
be controlled from a server side script. The Response.Buffer property must always be set to true when
using StreamFile.

The FileData method
Another option is available to read file data which is more versatile. The FileData method takes the file
name as an argument and returns an OLE variant containing the file data. The StreamFile example
from above would become:

<%
Response.Buffer = true
Response.Expires = 0
Response.ContentType = "application/x-zip-compressed"
Set Download = Server.CreateObject("csFileDownload.BinFile")
Response.AddHeader "Content-Disposition",

"inline; filename=sample.zip"
Response.AddHeader "Content-Length", Download.FileSize(

"C:\download\sample.zip")
Response.BinaryWrite Download.FileData("C:\download\sample.zip")
Response.End

%>

These two examples have the same effect, but if the file data was to be stored in a database, for
example, the FileData method would be used. The StreamFile method always adds the file name to the
header, and always sends the data to the browser, and there may be occasions when this is
undesireable.

The FileData method is more demanding on server memory and processing than StreamFile because it
generates a variable that is as big as the file itself and so it should not be used with large files.

MIME Types
When files are streamed to a browser, it is important to specify the MIME type using
Response.ContentType. The example above shows the MIME type for a zip file. There is a function
available which obtains the MIME type, given the file extension. Unfortunately, it extracts the
information from the server system registry, which would mean giving the Internet Guest Account
permission to access the registry. This is not recommended for a live site but it could be done during
development.

The syntax is: GetMimeType(Extension)

The code: Response.Write Download.GetMimeType("zip")

would result in the ouptput: "application/x-zip-compressed" if the script had permission
to read the registry, and: "application/unknown" otherwise.

It is recommended to find the correct MIME type first and hard code it into the script.

Verifying Completed Downloads
A big problem with most server statistics is that when they count file downloads, they are counting the
number of requests to the server, not complete downloads. By using the csFileDownload component, it
is possible to count downloads more accurately. This is done by using the Response.IsClientConnected
command immediately after streaming the file to the browser. The earlier example is modified as
follows:

<%
Response.Buffer = true
Response.Expires = 0
Response.ContentType = "application/x-zip-compressed"

Set Download = Server.CreateObject("csFileDownload.BinFile")
Download.FileName = "C:\download\sample.zip"
Download.StreamFile
Response.Flush
If Response.IsClientConnected = true Then

'The download was completed
'Do something

Else
'The download was not completed
'Do something else

End If
Response.End

%>

It is important to include Response.Flush immediately after the file was streamed. This effectively
pauses the script while the data is in transit to the browser. If the connection is not maintained during
this time, Response.IsClientConnected will return false. It is also important to note that html output
cannot be included at this stage. Only "hidden" server side processing can be done, but this can include
database or text file manipulation to update records.

This method is still not completely accurate. If the download is cancelled early enough neither of the
options in the If statement will be reached. It also has no way of determining if the end user
successfully saved the file after downloading.

Retrieving a File From a Remote Web Server
The csFileDownload component can get a file from a remote server using the URL and then save it or
stream it to the browser. The following commands are used:

StreamFromURL URL, FileName - Streams the file at URL directly to the browser.
FileName is the name sent to the browser. If FileName is an empty string the file name will be
extracted from the URL instead. The response buffer must be set to true to use this command.

SaveFromURL URL, FileName - Saves the file at URL to disk where FileName is
the physical path of the destination.

URLData(URL) - Returns the file data as a variant array.

Example of saving a file from a remote URL:

Download.SaveFromURL "http://domain/directory/file.ext",
"C:\download\file.ext"

Example of streaming the file to the browser:

Response.ContentType = "application/x-zip-compressed"
Download.StreamFromURL "http://domain/directory/file.zip", "file.zip"

This example shows a zip file so the content type is set accordingly. The FileName parameter could
have been an empty string in this case because the name is the same as in the URL.

The above commands can specify a user name and password with the request if authentication is
required by the server. Set the following properties before calling StreamFromURL, SaveFromURL or
URLData.

URLUsername - String. Username to be passed with StreamFromURL, SaveFromURL or
URLData.

URLPassword - String. Password to be passed with StreamFromURL, SaveFromURL or
URLData.

The HTTPUserAgent property can be set to specify a user agent in the request header.

HTTPUserAgent - String. Value for the User Agent request header when StreamFromURL,
SaveFromURL or URLData is called. This is null by default.

HTTPTimeout - Integer. Number of seconds before StreamFromURL, SaveFromURL or
URLData will time out due to inactivity. A zero value is an indefinite time, and this is the default.

Permissions and Accessing Remote Files
There are some important points to consider when working with files from a server side script. The
script accesses files on the same server using the Internet Guest User account (IUSR_machine_name).
This account frequently has limited default permissions so it may be necessary to adjust the
permissions on files or directories that the script needs to work with.

Remote network files can be accessed by using the shared path or the UNC path but the
csFileDownload component must first be registered as a COM+ application in Component Services.
Failure to do this will lead to "cannot open file" errors. The permission used for accessing remote files

is, by default, that of the user currently logged on to the server computer. This can be changed by
editing the application properties once it is registered in Component Services.

It is possible that a firewall on the server computer can interfere with the access of remote files. This
could affect network files or files read using the URL functions.

The Access Code Function
The csFileDownload component has a built in function for generating access codes. This can be used in
conjunction with file downloading, and is particularly useful if there is no database available on the
server for maintaining a list of eligible users.

The method:

AccessCode (String1, String2, IDNo) - takes 3 strings as input and returns a 15
digit hexadecimal number. String1 and String2 can be anything. They could be name and email
address, username and password, one could even be empty if required. The third value, IDNo is a
number between 0 and 4294967295 (2^32). IDNo can be entered as an 8 digit hexadecimal number if
it is enclosed in quotation marks and prefixed with a hash (#) or dollar ($) character, i.e. "#123456AB".

The returned value of AccessCode will always be the same for a given set of inputs, so a code can be
given out on one web page and verified on another. The IDNo is hidden from the end user, so even if
they have a copy of the component, they cannot predict the access code. IDNo should never be passed
in a URL string or a form variable or displayed in any other way.

Here is an example:

A web page asks the user for their name and email address and passes these as form variables to a
script which calculates an access code. The following lines will display the code:

<%
Set Download = Server.CreateObject("csFileDownload.BinFile")
Response.Write Download.AccessCode(Request.Form("Name"), _

Request.Form("Email"), "#ABCDEF01")
%>

This creates an instance of the csFileDownload object called "Download". It then takes the two form
variables and passes them to the AccessCode method along with a value for IDNo. If this was
completed by a user named "Fred", with an email address of "fred@somewhere.com", the access code
returned would be "66E78194DA6131F".

Another page asks the user for their name, email address and access code and passes these as form
variables to a script which verifies the code. The following lines perform the verification:

<%
Set Download = Server.CreateObject("csFileDownload.BinFile")
If Download.AccessCode(Request.Form("Name"), _

Request.Form("Email"), "#ABCDEF01") = _
Request.Form("AccessCode") Then
'Code is correct
'Do something

Else
'Code is not correct
'Do something else

End If
%>

This takes the name and email address that were supplied as form variables and pass them to the
AccessCode method, along with the same value of IDNo used earlier. The return value is then
compared with the code supplied by the user. Note that all the string values are case sensitive.

As with any password system, there will be ways of breaking it or bypassing it. This system has no
guarantees, but there are many applications where this level of protection is appropriate.

File Utilities
There are a number of file utility functions included for convenience. They are not intended to be a
comprehensive set, because standard asp has the File System Object component to cover most file
utilities. These are the functions most likely to be useful while controlling file downloads.

CurrentDir - This property returns the actual path of the directory containing the script. It
is complete with the trailing backslash character.

ParentDir(Directory) - Directory is a string value and must be a full directory path. The
return value is the parent directory.

Example:

Response.Write Download.ParentDir(Download.CurrentDir)

This would display the parent directory to the one containing the current script.

DirName - String. This is the directory that will be listed in the FileList collection. It is
a full physical path and can include a filter in the file name:

Download.DirName = "C:\zipfiles\"

This will assign all the files in the "zipfiles" directory to the FileList collection.

Download.DirName = "C:\zipfiles*.zip"

This will assign all the files with the extension .zip in the "zipfiles" directory to the FileList collection.

FileList - Collection of strings. When a directory is assigned to the DirName property
this collection will be populated by a list of the files in that directory. As a Collection it can be accessed
by index or in a For .. Each loop and it has a count property.

Example:

Download.DirName = "C:\zipfiles*.zip"
For Each ZipFile in Download.FileList

Response.Write ZipFile & "
"
Next

This would display all the zip files in the specified directory.

Scriptname - A read only property returning the current script name complete with
extension.

FileSize(FileName) - FileName is the full path and filename of a file. The return value is
the file size in bytes.

Delete(FileName) - This deletes the file FileName. Note that it is permanently deleted,
NOT placed in the Recycle Bin.

Copy OldName, NewName - This copies the file OldName to the location and name
given by NewName. Again, full paths are required.

Rename OldName, NewName - This renames the file OldName to NewName. Full paths
are required, and so renaming to a different directory is the equivalent of moving the file.

AppendToFile FileName, NewLine - This appends the string NewLine to the text file
FileName. If the text file does not exist, it will be created if possible. The full server path is required.

Example:

Download.AppendToFile Download.CurrentDir & "test.txt", "Hello"

This will append the line "Hello" at the end of a text file called test.txt which is in the same directory as
the current script. If the file does not exist it will create it.

AppendToFile is the only command in this component for manipulating text files. It is useful for
maintaining a simple log file containing download information. There is a full set of commands for
dealing with text files in the built in File System Object.

All the file handling routines require that the Internet Guest Account has the appropriate permissions
on the server, otherwise errors will result.

Version - This is a read only property showing the version of the csFileDownload.dll
file. In the case of the trial component, it shows the expiry date.

Revision History
The current version of csFileDownload is 2.0

New in Version 2.0:

Improvements to StreamFile command to allow for use with larger files.
PromptName property added.

Other Components From Chestysoft
Visit the Chestysoft web site for details of other components.

ASP Components
csASPUpload - Upload files through a browser form.
csASPZipFile - Create zip files and control binary downloads.
csImageFile - Resize and manipulate JPG, GIF, PNG, BMP, TIF and WBMP images.
csDrawGraph - Draw pie charts, bar charts and line graphs with an ASP script.
csASPGif - Create and edit animated GIFs.
csIniFile - Use Windows style inifiles in your ASP applications.
csFTPQuick - ASP component to transfer files using FTP.

ActiveX Controls
csXImage - Control to display, edit and scan images.
csXGraph - Control to display pie charts, bar charts and line graphs.
csXThumbUpload - Upload multiple files by HTTP or FTP with previews and image edits.
csXPostUpload - Control to upload batches of files to a server using HTTP.
csXMultiUpload - Select and upload multiple files and post to a server using HTTP.

ASP.NET Components
csASPNetGraph - A .NET component to draw pie charts, bar charts and line graphs.
csNetUpload - ASP.NET component for saving HTTP uploads.
csNetDownload - ASP.NET class to control file downloads.

Web Hosting
We can offer ASP enabled web hosting with our components installed. Click for more details.

Chestysoft, July 2010.
www.chestysoft.com

http://www.chestysoft.com/upload/default.asp
http://www.chestysoft.com/zipfile/default.asp
http://www.chestysoft.com/imagefile/default.asp
http://www.chestysoft.com/drawgraph/default.asp
http://www.chestysoft.com/aspgif/default.asp
http://www.chestysoft.com/inifile/default.asp
http://www.chestysoft.com/ftpquick/default.asp
http://www.chestysoft.com/ximage/default.asp
http://www.chestysoft.com/xgraph/default.asp
http://www.chestysoft.com/xthumbupload/default.asp
http://www.chestysoft.com/xpostupload/default.asp
http://www.chestysoft.com/xmultiupload/default.asp
http://www.chestysoft.com/aspnetgraph/default.asp
http://www.chestysoft.com/netupload/default.asp
http://www.chestysoft.com/netdownload/default.asp
http://www.chestysoft.com/hosting/default.asp
http://www.chestysoft.com/

	Introduction
	Object Creation

	Controlling Downloads
	The StreamFile Method
	The Attachment Property
	The FileData method
	MIME Types

	Verifying Completed Downloads
	Retrieving a File From a Remote Web Server
	Permissions and Accessing Remote Files
	The Access Code Function
	File Utilities
	Revision History
	Other Components From Chestysoft
	ASP Components
	ActiveX Controls
	ASP.NET Components
	Web Hosting

