
 1

Website: www.chestysoft.com Email: info@chestysoft.com

csASPGif - Version 3.0
COM Object for Creation and Editing of Multi-Frame GIF

Images

This is a COM object that can create and edit multi frame GIF images (animated GIFs). A

comprehensive range of functions is available to load and save entire images or individual frames, as

well as for drawing text and shapes, setting animation properties and manipulating colour maps.

A free, fully functional trial version of csASPGif is available. If you are reading this instruction

manual for the first time, it is likely that you have just downloaded the trial version. The trial version

has a built in expiry date that causes it to stop working after that time. This is the only difference in

functionality between the trial and full versions. This means that you can fully test if this control is

suitable for your application before considering whether to license the full version.

Version 3.0 is supplied as two different DLL files, one is 32 bit and the other 64 bit. Refer to the next

section for more details of registration and component instantiation.

Using these Instructions

These instructions are divided into a number of sections covering different types of functions available

in csASPGif. A full Table of Contents is available on the next page and an index listing all commands

in alphabetical order is included at the back for easy reference.

There is a section explaining some of the essential details of the GIF format and it is important to

understand the concepts of the Global Colour Table and Local Colour Tables before using csASPGif to

draw and edit GIF images.

Click on one of the links below to go directly to the section of interest:

• Registering the Component and Getting Started

• Introduction to the GIF Format

• Full Table of Contents

• Alphabetical Index of Commands

• Import and Export of GIFs and Frames

• Colours and Colour Tables

• Drawing Shapes and Text

• Frame Properties and Animation

• Language Specific Issues (ASP, Cold Fusion and Visual Basic)

Chestysoft, August 2019

www.chestysoft.com

http://www.chestysoft.com/
mailto:info@chestysoft.com
http://www.chestysoft.com/

 2

TABLE OF CONTENTS

1. REGISTERING THE COMPONENT AND GETTING STARTED .. 3

1.1. REGISTRATION AND SERVER PERMISSIONS ... 3
1.2. OBJECT CREATION .. 3
1.3. THE TRIAL VERSION.. 4
1.4. USING CSASPGIF WITH COMPONENT SERVICES .. 4
1.5. SYSTEM REQUIREMENTS ... 4

2. IMPORT AND EXPORT OF GIFS AND INDIVIDUAL FRAMES ... 5

2.1. READING AND WRITING FILES FROM/TO DISK .. 5
2.2. READING AND WRITING FILES FROM/TO A VARIABLE .. 5
2.3. READING GIF IMAGES FROM A REMOTE URL ... 6
2.4. EXCHANGING GIF FRAMES WITH OTHER CONTROLS .. 7

3. COLOURS AND COLOUR TABLES .. 8

3.1. USING STRINGS FOR COLOURS .. 8
3.2. COLOUR TABLES ... 8
3.3. COLOUR FUNCTIONS ... 9

4. DRAWING SHAPES AND ADDING TEXT ... 10

4.1. PEN AND BRUSH PROPERTIES .. 10
4.2. CLEARING THE FRAME .. 10
4.3. SHAPES, LINES AND PIXELS ... 11
4.4. DRAWING TEXT ... 12

4.4.1. Automatically Wrapping Text ... 13
4.5. FILLING AREAS ... 13

5. IMAGE MANIPULATION (RESIZE, ROTATE, CROP AND FLIP) 14

6. FRAME PROPERTIES AND ANIMATION .. 16

7. FRAME OPTIMISATION .. 18

8. MERGING IMAGES ... 19

9. STREAMING AN IMAGE TO THE BROWSER .. 20

10. LANGUAGE SPECIFIC ISSUES ... 21

10.1. ACTIVE SERVER PAGES ... 21
10.1.1. ASP with Javascript .. 21

10.2. COLD FUSION .. 21
10.3. VISUAL BASIC ... 22

11. IMPORTANT FEATURES OF GIFS .. 23

11.1. COLOURS AND COLOUR TABLES ... 23
11.2. COMPRESSION ... 23
11.3. THE LOGICAL SCREEN AND FRAME CO-ORDINATES .. 23
11.4. TRANSPARENCY .. 23
11.5. TIMING AND LOOPING AN ANIMATION .. 23

12. REVISION HISTORY ... 24

13. OTHER PRODUCTS FROM CHESTYSOFT .. 25

14. ALPHABETICAL LIST OF COMMANDS .. 26

 3

1. Registering the Component and Getting Started

1.1. Registration and Server Permissions

Before the component can be used the DLL file must be registered on the server. This can be done

using the command line tool REGSVR32.EXE. Take care to use the correct version of this tool as there

is a 64 bit version in the Windows\System32 folder and a 32 bit version in the Windows\SysWOW64

folder. The syntax is:

regsvr32 dllname

where dllname is the path and name of the DLL to register.

There are two DLL files supplied in the zip archive, one for 32 bit systems and one for 64 bit. The 32

bit file is called csASPGif.dll (csASPGifTrial.dll for the trial version). The 64 bit file is called

csASPGif64.dll (csASPGif64Trial.dll for the trial version). The 64 bit file cannot be used on 32 bit

systems.

Chestysoft has a free utility that performs the registration function through a Windows interface instead

of using regsvr32. This tool can be downloaded from the Chestysoft web site:

www.chestysoft.com/dllregsvr/default.asp

We suggest creating a folder specifically for component DLLs rather than using the Windows System

folder as this makes them easier to manage and avoids the naming confusion on the 64 bit systems.

The application that uses the component must have permission to read and execute the DLL. In a web

application like ASP this means giving the Internet Guest User account Read and Execute permission

on the file. This account must also have the appropriate permissions for file handling. Read permission

is required to read/open a file from disk. Write permission is required to create a new file and Modify is

required to edit or delete an existing file. These permissions can be set in Windows Explorer and

applied to either a folder or individual files.

1.2. Object Creation

In any script or programme that uses the component an object instance must be created. The syntax in

ASP is as follows.

For the full 32 bit version:

Set Gif = Server.CreateObject("csASPGif.Gif")

For the trial 32 bit version:

Set Gif = Server.CreateObject("csASPGifTrial.Gif")

For the full 64 bit version:

Set Gif = Server.CreateObject("csASPGif64.Gif")

For the trial 64 bit version:

Set Gif = Server.CreateObject("csASPGif64Trial.Gif")

In each case the object name is "Gif", but any variable name could be used.

file:///C:/Programming/DelphiXE3/Chestysoft/csASPGif/documents/www.chestysoft.com/dllregsvr/default.asp

 4

1.3. The Trial Version

The trial version of the component is supplied as a separate DLL called csASPGifTrial.dll (or

csASPGif64Trial.dll). This trial version is fully functional but it has an expiry date, after which time it

will stop working. The object can still be created after the expiry date but it cannot be used to create or

edit images.

The expiry date can be found by reading the Version property.

Version - String, read only. This returns the version information and for the trial, the expiry date.

Example:

Set Gif = Server.CreateObject("csASPGifTrial.Gif")

Response.Write Gif.Version

Visit the Chestysoft web site for details of how to buy the full version - https://www.chestysoft.com

1.4. Using csASPGif with Component Services

A COM component can be added to a COM+ Application in Component Services. One reason to do

this is to be able to run a 32 bit DLL on a 64 bit system. Another is to specify a Windows account to

use the component to allow that component to access network files that would be unavailable if the

component was called by the default internet guest user.

An online description of configuring Component Services is available here:

https://www.chestysoft.com/component-services.asp

1.5. System Requirements

csASPGif version 3.0 does not support earlier Windows operating systems. It requires Windows 2003

or later for a server or Windows XP or later for a desktop. It will not register or run on Windows 2000.

We can still provide version 2 for any users of an older operating system.

https://www.chestysoft.com/aspgif/pricing.asp
https://www.chestysoft.com/component-services.asp

 5

2. Import and Export of GIFs and Individual Frames

Images can be read into the control and exported from the control in several different ways. The most

common method is to read files from disk and write files to disk. Images can be read from a variant

array data type as exported by a database field or an upload component. Images can be exported in this

binary format and streamed to a web browser for dynamic display. It is also possible to read an image

from a remote URL via the internet. All these import and export methods use the GIF format. An

additional import/export method uses the handle to a bitmap but this can only be used with individual

frames.

Reading a complete GIF overwrites the existing contents of the component. A frame can only be read

to replace an existing frame and the AddFrame function must be used if there is no existing frame at

the required index.

2.1. Reading and Writing Files From/To Disk

Complete GIF images are read into the component using ReadFile and saved to disk using WriteFile.

Individual frames are read using ReadFrameFromFile and saved using WriteFrameToFile.

Appropriate permissions must be set for reading and writing files. In a web application the Internet

Guest User account must have Read permission to open a file, Write permission to save and Modify to

overwrite an existing file. The csASPGif component must be added to a COM+ Application in

Component Services before it can be used to access files across a network.

ReadFile FileName - Reads a GIF image from disk. FileName must be a complete physical path to

the file, including the file extension.

Example:

Gif.ReadFile "C:\images\test.gif"

In ASP a virtual path can be mapped to a physical path using Server.MapPath:

Gif.ReadFile Server.MapPath(".") & "\test.gif"

WriteFile FileName - Saves the currently loaded GIF file to disk. FileName must be a complete

physical path to the file, including the file extension.

ReadFrameFromFile Filename, Index - Reads a GIF into the frame specified by Index. FileName

must be a complete physical path to the file. Index is an integer where 0 is the first frame. If Index

specifies a frame that does not yet exist in the current image an error will be generated. If the source

image contains multiple frames only the first is used.

Example of creating a GIF and reading an image into the first frame:

Set Gif = Server.CreateObject("csASPGif.Gif")

Gif.AddFrame

Gif.ReadFrameFromFile "C:\images\test.gif", 0

WriteFrameToFile FileName, Index - Saves the frame specified by Index to the file name specified

by FileName, which is the full physical path including the extension.

2.2. Reading and Writing Files From/To a Variable

Complete GIF images can be read from a variant array variable using ReadStream and single frames

can be read using ReadFrameFromStream. Complete GIFs can be exported as a variant array using

GIFData and single frames using GIFFrameData.

 6

Not all languages support variant arrays. ASP uses them and GIFData can be used with

Response.BinaryWrite to display an image in the browser. Cold Fusion does not support these

functions.

ReadStream Data - This reads a GIF into the component from a variant array variable, Data. This

could be a VBScript variable, a binary database filed or from our csASPUpload component.

To read a file directly from csASPUpload using ASP:

GifObj.ReadStream UploadObj.FileData(0)

This will read a GIF into csASPGif from csASPUpload if the file is the first or only file in the uploaded

array. GifObj is the name of the instance of csASPGif and UploadObj is the name of the instance of

csASPUpload.

To read data from a database field in ASP the data must first be passed to a temporary variable:

TempData = RSet("GIFImage")

GifObj.ReadStream TempData

This would read in a GIF file from a binary field in a database, assuming the field name is "GIFImage"

and the recordset RSet has been opened. The temporary variable is needed to convert the data to the

correct format.

ReadFrameFromStream Data, Index - This reads a GIF frame from the variant array variable

Data into the frame specified by Index. If Index specifies a frame that does not yet exist in the current

image an error will be generated. If the source image contains multiple frames only the first is used.

GIFData - The complete GIF as a variant array.

To send the GIF to a browser an ASP script would use the following, without any other output

appearing in the script:

Response.ContentType = "Image/gif"

Response.BinaryWrite GIFObj.GIFData

GIFFrameData (Index) - The frame specified by Index as a variant array. The first frame has an

index of zero.

Example of sending the first frame of a GIF to the browser:

Response.ContentType = "Image/gif"

Response.BinaryWrite GIFObj.GIFFrameData(0)

2.3. Reading GIF Images from a Remote URL

GIF images can be read from a remote URL if the calling application has an internet connection.

ReadURL reads a complete GIF and ReadFrameFromURL reads a GIF into a specified frame. The

properties URLUsername and URLPassword can be set if authentication is required. The

HTTPUserAgent property can be set to specify a user agent in the request header. It is possible that a

firewall would need special configuration to allow the outgoing connection and if a proxy is used the

component needs to be added to a COM+ Application in Component Services.

ReadURL URL - Loads the GIF image at address URL into the component. URL must include the

"http://" or "https://" prefix. Remember to use forward slashes in the URL not backslashes.

Example:

 7

Gif.ReadURL "http://www.chestysoft.com/images/logo.gif"

ReadFrameFromURL URL, Index - Loads the GIF image at address URL into the frame specified

by Index. If the source image contains multiple frames, only the first will be loaded. Index must specify

an existing frame in the current image. Use AddFrame to create a new empty frame.

URLUsername - String. Username to be passed with ReadURL or ReadFrameFromURL.

URLPassword - String. Password to be passed with ReadURL or ReadFrameFromURL.

HTTPUserAgent - String. User agent field to be passed with ReadURL or ReadFrameFromURL. By

default this is null and the user agent is not specified.

HTTPTimeout - Integer. Number of seconds before ReadURL or ReadFrameFromURL will time out

due to inactivity. A zero value is an indefinite time, and this is the default.

2.4. Exchanging GIF Frames with Other Controls

The FrameHandle property provides a way of transferring an image to another control, or receiving an

image that is already held in memory.

FrameHandle (Index) - Returns a Windows handle to a copy of the bitmap image currently in the

frame specified by Index. Setting this property copies the image referenced by the new handle value

into the frame specified by Index. Any image input to a frame will be converted to the same colour

depth as the currently loaded GIF image. This is the only method of loading an image that is not in GIF

format.

This property can be used, for example, to copy an image between two instances of the component and

this would be a way of swapping frames between GIFs.

Gif2.FrameHandle(0) = Gif1.FrameHandle(1)

This would copy the second frame from the object Gif1 to the first frame of the object Gif2.

Another example is for copying an image to csASPGif from a VB PictureBox control:

GifObj.FrameHandle(0) = Picture1.Picture.Handle

Finally, here is an example of copying a JPG image using our csImageFile component:

Set Image = Server.CreateObject("csImageFile.Manage")

Image.ReadFile "C:\images\test.jpg"

Set Gif = Server.CreateObject("csASPGif.Gif")

Gif.AddFrame

Gif.FrameHandle(0) = Image.BMPHandle

The colour depth for csASPGif is 8 bit, unless changed by setting the ColorDepth property. The image

will be converted to 256 colours when it is imported and a Local Colour Table will be created for the

frame. The AddFrame command must be called to create the empty frame before an image can be

loaded into it.

 8

3. Colours and Colour Tables

This section describes the methods and properties used for working with the Global Colour Table and

Local Colour Tables. For an overview on colour tables, read the section on the GIF format.

3.1. Using Strings for Colours

All the colours are entered as hexadecimal strings as used by HTML, so red is "FF0000", blue is

"0000FF" and white is "FFFFFF". If a conversion is needed between this string format and the

numerical OLE_COLOR values used by other applications, use OLEColorToStr and StrToOLEColor.

OLEColorToStr (Color) - Returns the 6 character HTML style hexadecimal colour string where

Color is the OLE_COLOR value.

StrToOLEColor (ColorString) - Returns the numeric OLE_COLOR value where ColorString is the 6

character HTML style colour.

3.2. Colour Tables

Each GIF has a ColorDepth which is the number of pixels per byte. This is a value of 1, 4 or 8 and it

applies to all the frames in the GIF. By default a newly created object has the ColorDepth set to 8.

A GIF may have a Global Colour Table (GCT) which stores up to 256 RGB colour values. The GCT

can be used by any or all of the frames. Each frame can either use the GCT or it can have its own Local

Colour Table (LCT). The property HasGCT applies to the whole GIF and determines whether a GCT

exists. HasLCT applies to each frame and sets whether the frame uses the LCT or the GCT.

ColorDepth - Integer value, 1, 4 or 8. The number of pixels per byte in the image. Attempting to set

the ColorDepth to an invalid value raises an error. Default value is 8.

ColorTableSize - Integer, read only. The number of colours in the GIF colour tables. This is

dependent on ColorDepth and is always 2 ^ (ColorDepth).

HasGCT - Boolean. Set to true when the GIF uses a Global Colour Table. (Default = false)

The value of HasGCT is applied to new frames added with AddFrame to decide whether they use the

GCT or have a LCT created.

HasLCT (Index) - Boolean. When true the frame Index uses a Local Colour Table, when false, the

frame uses the Global Colour Table.

HasLocalColorTables - Boolean, read only. This will return true if at least one frame

contains a local colour table.

Individual colour table entries can be read or set and entire colour tables can be copied to each other.

When a colour is specified for drawing or filling it will be added to the appropriate colour table, if it is

not already present and if there is an unused entry.

GCTEntry (ColorIndex) - String. The hex string colour value of the GTC entry at ColorIndex where

ColorIndex is an integer between 0 and ColorTableSize - 1.

LCTEntry (Frame, ColorIndex) - String. The hex string colour value of the LCT entry in Frame with

index ColorIndex. Frame and ColorIndex are integers.

CopyGCTToLCT (Index) - Copies the Global Colour Table to the Local Colour Table for the frame

specified by Index. The colours in the frame are mapped to the nearest available colours in the new

table.

 9

CopyLCTToGCT (Index) - Makes the Local Colour Table from the frame specified by Index into the

Global Colour Table. Any frames that use the GCT will have their colours mapped to the nearest

available colours in the new GCT.

CopyLCTToLCT (ToIndex, FromIndex) - Copies the Local Colour Table used by frame FromIndex

to the Local Colour Table of the frame ToIndex. The colours in the frame are mapped to the nearest

available colours in the new table.

The index within the colour table can be found for a given colour using ColourIndex. The number of

pixels in a frame that are a particular colour can be found with ColourCount and the first entry in a

colour table that is unused can be found with FindUnusedColor.

3.3. Colour Functions

ColorIndex (Color, Frame) - Returns the index of Color in the colour table used by the frame

specified. Color is the colour as a 6 character hexadecimal string and Frame is the zero based frame

index. The return value is an integer and is -1 if Color is not present in the colour table.

ColorCount (ColorIndex, FrameIndex) - Returns the number of pixels that are the colour of

ColorIndex in the frame specified by FrameIndex. ColorIndex is the index in the colour table used by

the frame.

FindUnusedColor (FrameIndex) - Returns the index within the colour table of the first entry that is

not used by any pixels. FrameIndex is the index of the frame. The return value is an integer and is -1 if

all the colour table entries are used by pixels.

A multiframe GIF image can be made to use less memory by removing the Local Colour Tables and

using a Global Colour Table for all the frames. The OptimizeColorTables function will do this. If the

total number of different colours before optimisation are greater than the size of the GCT some

approximation must be used. The colours used for transparency will also be changed during the

optimisation.

OptimizeColorTables - Creates a Global Colour Table from all the frames and sets HasGCT to false

for all the frames. If transparency is used in any frames in the image a single colour will be selected as

the transparent colour to be used throughout. Where possible, this will be an unused colour, otherwise

the least used colour will be selected.

When a new frame is created the value of its colour table will depend on the value of DefaultPalette,

the colour depth of the GIF and whether it is the first frame.

DefaultPalette - Integer value, 0, 1, 2 or 3. This controls what predefined colour table entries are used

when a frame is created using AddFrame, and it must be set before calling AddFrame. It will apply

when the first frame is created if HasGCT is true and for every frame when HasLCT is true for that

frame. The values have the following meaning:

0 - The colour table will be empty with each entry taking the value zero or black. (Default)

1 - An 8 bit image will be given the web safe palette of 216 colours with the remaining entries black. A

4 bit image will take the standard 16 colour Windows palette and a 1 bit image will be black and white.

2 - Greyscale. The graduation of the colours will vary depending on the colour depth.

3 - Unchanged. In most cases this will be the same as 0 above except when used after modifying the

Global Colour Table. With this setting the existing GCT entries will remain.

 10

4. Drawing Shapes and Adding Text

There are a number of functions available for drawing lines, shapes and text.

4.1. Pen and Brush Properties

The colour of outlines and text is determined by PenColor. The line thickness and style by

PenThickness and PenStyle. The background and filled colours are determined by BrushColor. The

filled styles are set by BrushStyle.

PenColor - String hex colour value. The colour of lines or text that are drawn using the functions

described in this section. (Default = "000000", black).

PenThickness - Integer. The thickness in pixels of drawn lines and shapes. This property does not

apply to text. (Default = 1).

PenStyle - Integer value 0 to 5. The pattern of drawn lines and shape outlines. Only PenStyle = 0 can

be used if the PenThickness is greater than 1. (Default = 0, solid).

0, Solid

3, DashDot

1, Dash

4, DashDotDot

2, Dot

5, Clear

BrushColor - String hex colour value. The colour of filled areas. This is not used when BrushStyle is

clear. Default = "FFFFFF", white.

BrushStyle - Integer value 0 to 7. The pattern of filled areas. (Default = 1, clear).

0, Solid

4, Cross

1, Clear

5, DiagCross

2, BDiagonal

6, Horizontal

3, FDiagonal

7, Vertical

The colours used by PenColor or BrushColor will be added to the active colour table, if there is a spare

table entry and if they are not already present, otherwise the nearest available colour will be used

instead.

4.2. Clearing the Frame

An empty frame is added to the GIF using AddFrame but this does not give the frame an area or any

other features. An image must be either loaded into the frame or ClearImage must be used to give the

frame a height and width and a background colour before anything can be drawn on it.

 11

ClearImage Width, Height, Index - This makes the image in the frame defined by Index into a blank

rectangle with dimensions Width x Height, the colour of BrushColor.

4.3. Shapes, Lines and Pixels

The following functions are used for drawing.

DrawArc X1, Y1, X2, Y2, X3, Y3, X4, Y4, Index - Draws an elliptically curved line the colour of

PenColor on the frame specified by Index. The arc follows the perimeter of the ellipse bounded by (X1,

Y1) and (X2, Y2), and moves anticlockwise from the start point to the end point. The start point is

defined by the intersection of the ellipse with a line drawn from the centre to the point (X3, Y3). The

end point is defined by the intersection of the ellipse with a line drawn from the centre to the point (X4,

Y4).

DrawChord X1, Y1, X2, Y2, X3, Y3, X4, Y4, Index - Draws a shape bounded by an arc and a line

that joins the endpoints of the arc, on the frame specified by Index. The arc is an elliptically curved line

that follows the perimeter of the ellipse bounded by (X1, Y1) and (X2, Y2), and moves anticlockwise

from the start point to the end point. The start point is defined by the intersection of the ellipse with a

line drawn from the centre to the point (X3, Y3). The end point is defined by the intersection of the

ellipse with a line drawn from the centre to the point (X4, Y4). The outline is drawn the colour of

PenColor and filled using the pattern defined by BrushStyle and the colour defined by BrushColor.

DrawEllipse X1, Y1, X2, Y2, Index - Draws a circle or ellipse that fits into the rectangle defined by

the top left corner (X1, Y1) and the bottom right corner (X2, Y2), on the frame specified by Index. The

outline is drawn the colour of PenColor and filled using the pattern defined by BrushStyle and the

colour defined by BrushColor.

DrawLine X1, Y1, X2, Y2, Index - Draws a draws a line from point (X1, Y1) up to but not including

the point (X2, Y2). The style, colour and width of the line are determined by the properties PenStyle,

PenColor and PenThickness. The line is drawn on the frame specified by Index.

DrawPie X1, Y1, X2, Y2, X3, Y3, X4, Y4, Index - Draws a pie shaped wedge defined by an arc of

an ellipse and lines joining the ends of the arc with the centre of the ellipse. The arc follows the

perimeter of the ellipse bounded by (X1, Y1) and (X2, Y2), and moves anticlockwise from the start

point to the end point. The start point is defined by the intersection of the ellipse with a line drawn from

the centre to the point (X3, Y3). The end point is defined by the intersection of the ellipse with a line

drawn from the centre to the point (X4, Y4). The outline is drawn in the color of PenColor and filled

using the pattern defined by BrushStyle and the colour defined by BrushColor. It is drawn on the frame

specified by Index.

DrawRectangle X1, Y1, X2, Y2, Index - Draws a rectangle defined by the top left corner (X1, Y1)

and the bottom right corner (X2, Y2). The outline is drawn in the color of PenColor and filled using the

pattern defined by BrushStyle and the colour defined by BrushColor. It is drawn on the frame specified

by Index.

DrawRoundRect X1, Y1, X2, Y2, X3, Y3, Index - Draws a rectangle defined by the top left corner

(X1, Y1) and the bottom right corner (X2, Y2). The corners will be rounded with a curve matching an

ellipse with width X3 and height Y3. The outline is drawn in the color of PenColor and filled using the

pattern defined by BrushStyle and the colour defined by BrushColor. It is drawn on the frame specified

by Index.

A polygon can be drawn with a variable number of vertices. The points are first specified by repeated

calls to the PointAdd function and the polygon is drawn using DrawPolygon.

PointAdd X, Y - Adds a point to be used as a vertex by the DrawPolygon function.

DrawPolygon Index - Draws a polygon on the frame defined by Index using the points added by

PointAdd as vertices. The points stored by PointAdd are cleared after the polygon is drawn. The outline

 12

is drawn in the color of PenColor and filled using the pattern defined by BrushStyle and the colour

defined by BrushColor.

The colour of an individual pixel can be read or set using the Pixel property.

Pixel (X, Y, Index) - String hex colour value. X and Y are the coordinates of the pixel and Index is the

GIF frame. This property can be set to a colour value to change the pixel colour or the property can be

read to return the colour of the pixel.

Example:

Gif.Pixel(10, 10, 0) = "0000FF"

This sets the pixel at point (10, 10) in frame 0 to blue, or the nearest available colour in the colour table

for that frame.

4.4. Drawing Text

Text can be drawn onto a frame of the image using the DrawText function. The text colour and

background are set by PenColor and BrushColor. There are properties to control the font face, style

and size. Text can be drawn antialiased but this will change the colour table entries because extra

colours are needed. Default property values are shown in brackets.

DrawText X, Y, Index, Text - This draws the text string Text at the coordinates X, Y on the frame

specified by Index. The text can use Unicode characters, subject to a suitable font being used, and the

string can contain carriage return characters to make it span multiple lines. To give the text a

transparent background set BrushStyle to 1 for clear.

TextFont - String. The name of the font face to be used. This must be an installed font. ("Arial")

TextSize - Integer. The height of the text in pixels. (16)

TextAngle - Real. The angle of rotation of the text in degrees measured anticlockwise from the

horizontal. 0 is left to right text, 90 is written up the page from bottom to top. (0)

TextBold - Boolean. Set to true for bold text. (false)

TextItalic - Boolean. Set to true for italic text. (false)

TextStrikeout - Boolean. Set to true for a strikeout text style. (false)

TextUnderline - Boolean. Set to true for underlined text. (false)

Example of drawing text at co-ordinates (10, 10) on the first frame using Comic Sans MS font at a size

of 20 pixels in a bold style:

Gif.TextFont = "Comic Sans MS"

Gif.TextSize = 20

Gif.TextBold = true

Gif.DrawText 10, 10, 0, "Sample Text"

TextJustify - Integer value 0 to 2. A choice of options for justifying text that spans multiple lines

when carriage returns are used to split the lines.

0 - Left justify (default)

1 - Centre justify

2 - Right justify

 13

Antialias - Boolean. When true, text will be drawn antialiased. This will change the colour table for

the frame on which the text is drawn, and it will set HasLCT to true for this frame. This could also

change the transparent colour for the frame, if it had one. (false)

The size of a text string can be found without drawing anything on the image using TextWidth and

TextHeight.

TextWidth (Text) - Returns the width (length) of the string Text, in pixels, if it was to be drawn using

the current text properties.

TextHeight (Text) - Returns the height of the string Text, in pixels, if it was to be drawn using the

current text properties.

4.4.1. Automatically Wrapping Text

Text can be made to wrap to fit into a rectangular area, although it will only be broken at a space. To

do this, TextWrap is set to true and TextRectX specifies the width of the text area. TextRectY can be set

to limit the vertical size of the text block but this can lead to text getting clipped.

TextWrap - Boolean. When true, text written with DrawText will be broken to fit inside a box of

width and height defined by TextRectX and TextRectY. The text will only be broken at a space. (false)

TextRectX - Integer. The maximum length of the text in pixels when TextWrap is true. When zero the

text will wrap at the edge of the image. (0)

TextRectY - Integer. The maximum height of the text, in pixels, when TextWrap is true. When zero

the text is not restricted. (0)

4.5. Filling Areas

There are two commands for filling an area with a colour, FloodFill and FillToBorder. The fill pattern

is defined by BrushStyle and it will have no effect if this is set to 1 for clear fill.

FloodFill X, Y, Index - Fills an area on the frame defined by Index with BrushColor spreading

outward from the point (X, Y) until a different colour is reached. All the pixels filled will have the

same original colour as the pixel at (X, Y).

FillToBorder X, Y, Index, Color - Fills an area on the frame defined by Index with BrushColor

spreading outward from the point (X, Y) until a boundary of Color is reached. Color is a 6 character

hex string of the form "RRGGBB".

 14

5. Image Manipulation (Resize, Rotate, Crop and Flip)

This section describes functions for manipulating the image and they can either be applied to the entire

image or to an individual frame. Where a command manipulates the entire image the frame offest

properties, ImageLeft and ImageTop, will be changed to keep the frames positioned relative to each

other.

ResizeAll Width, Height - Resizes all the frames in the image so that the overall size is Width x

Height. If either parameter is zero the other parameter is used for the new width or height and the

aspect ratio is maintained. The values of ImageTop and ImageLeft are taken into consideration when

calculating the overall size of the image.

ResizeFrame Width, Height, Index - Resizes the frame specified by Index to dimensions Width x

Height. If either parameter is zero the other parameter is used for the new width or height and the

aspect ratio is maintained. The values of ImageTop and ImageLeft are not changed.

ScaleAll Factor - Scales all the frames in the image by a percentage scaling of Factor. The values of

ImageTop and ImageLeft are also scaled so that any offset frames will maintain their relative position.

ScaleFrame Factor, Index - Scales the frame specified by Index by a percentage scaling of Factor.

The values of ImageTop and ImageLeft are unchanged.

RotateAll Angle - The whole GIF image is rotated by Angle degrees anticlockwise, where Angle is a

real number (single precision). The values of ImageTop and ImageLeft are recalculated to maintain the

relative position of offset frames. Rotations by an angle that is not a multiple of 90 degrees create

triangular areas on the image that are the colour specified by ExtraColor.

RotateFrame Angle, Index - The frame specified by Index is rotated Angle degrees anticlockwise.

The values of ImageTop and ImageLeft are unchanged. Rotations by an angle that is not a multiple of

90 degrees create triangular areas on the image that are the colour specified by ExtraColor.

CropAll X1, Y1, X2, Y2 - Crops every frame to a rectangle with opposite corners at (X1, Y1) and

(X2, Y2). These coordinates are measured from the top left of the logical screen so the values of

ImageTop and ImageLeft are taken into consideration and can be changed. Frames are not increased in

size by cropping to a larger area.

CropFrame X1, Y1, X2, Y2, Index - Crops the frame specified by Index to a rectangle with opposite

corners at (X1, Y1) and (X2, Y2). The values of ImageTop and ImageLeft are unchanged. Cropping to

a larger rectangle than the frame increases the frame size and the new area is the colour specified by

ExtraColor.

ExtraColor - String hex colour value property. This is the colour used for the extra areas created

during a rotation or an oversized crop. The colour must be in the active colour table or an

approximation will be used. (Default = "FFFFFF")

ApplySmoothing - Boolean property. When true a resize, scale or rotation will use

some resampling to give a smoother appearance. Each resampled frame will have its colours converted

to a local colour table. In many cases this is not a desirable effect and that is why the property is false

by default. Rotations by a multiple of 90 degrees are never resampled because they can be performed

without degradation. Transparency is often lost during resampling. The resampling filter used is

defined by the FilterType property, described below. (Default = false)

FilterType - Integer in the range 0 to 4. This sets the filter used when a resize is

performed using ApplySmoothing. The available values are 0 - Halftone, 1 - Bilinear, 2 - Hermite, 3 -

Bell, 4 - B-Spline. (Default = 0)

FlipAllX - Flips (reflects) the entire GIF image around a horizontal axis so that the top becomes the

bottom and the bottom becomes the top. The values of ImageTop and ImageLeft are recalculated to

maintain the relative position of offset frames.

 15

FlipFrameX Index - Flips the frame specified by Index around a horizontal axis so that the top

becomes the bottom and the bottom becomes the top. The values of ImageTop and ImageLeft are

unchanged.

FlipAllY - Flips (reflects) the entire GIF image around a vertical axis so that the left becomes the right

and the right becomes the left. The values of ImageTop and ImageLeft are recalculated to maintain the

relative position of offset frames.

FlipFrameY Index - Flips the frame specified by Index around a vertical axis so that the left becomes

the right and the right becomes the left. The values of ImageTop and ImageLeft are unchanged.

 16

6. Frame Properties and Animation

This section covers methods and properties that are used for adding and reordering frames, as well as

properties that control the appearance and display of animated GIFs.

AddFrame - Adds a new empty frame to the current GIF. The integer return value is the index of the

new frame. The first frame has an index of zero. AddFrame must be called before a new frame can be

loaded using one of the import methods or before calling ClearImage to create an empty drawing

surface. The only other methods that add frames to a GIF are the import functions that load a complete

GIF image containing multiple frames.

When HasGCT is true, the new frame uses the Global Colour Table, i.e. HasLCT is false for the new

frame. When HasGCT is false, the new frame has a Local Colour Table.

DeleteFrame Index - This deletes the frame specified by Index.

CopyFrame ToIndex, FromIndex - This copies the frame specified by ToIndex and uses it to

overwrite the frame specified by FromIndex.

ExchangeFrames Index1, Index2 - This swaps the frames specified by indices Index1 and Index2.

FrameCount - Integer, read only. The number of frames in the GIF.

Each GIF has a "logical screen" which can be larger than the frames. This logical screen size is stored

in the properties ScreenWidth and ScreenHeight. Each frame is positioned on this logical screen

relative to the top left corner and this position is set by ImageLeft and ImageTop. This enables a small

image to be animated on a larger background to reduce the amount of pixel data that is stored. By

default ScreenWidth and ScreenHeight are calculated as the smallest values that can store all the frames

but they can also be set to higher values.

ImageLeft (Index) - Integer. The distance in pixels between the left of the logical screen and the

frame specified by Index. (Default = 0)

ImageTop (Index) - Integer. The distance in pixels between the top of the logical screen and the

frame specified by Index. (Default = 0)

FrameWidth (Index) - Integer, read only. The width of the frame specified by Index. This does not

include ImageLeft. Set the frame width with ClearImage, Resize, Scale or CropFrame.

FrameHeight (Index) - Integer, read only. The height of the frame specified by Index. This does not

include ImageTop. Set the frame height with ClearImage, Resize, Scale or CropFrame.

ScreenWidth - Integer. The width of the logical screen. This is calculated as the largest value of

ImageLeft + FrameWidth or it can be set to a higher value.

ScreenHeight - Integer. The height of the logical screen. This is calculated as the largest value of

ImageTop + FrameHeightor it can be set to a higher value.

Each frame of a GIF can have a transparent colour, which should allow the background from behind

the image to show through, subject to the GIF reader interpreting it. If several frames have

transparency they do not have to use the same colour.

Transparent (Index) - Boolean. When true, the frame specified by Index contains a transparent

colour. (Default = false)

TransparentColor (Index) - Integer. This is the colour used as the transparent colour by the frame

specified by Index. It is the index of the colour inside the colour table used by the frame, not the colour

value itself. (Default = 0)

 17

Example:

Gif.Transparent(0) = true

Gif.TransparentColor(0) = Gif.ColorIndex("FF0000", 0)

This sets transparency for the first frame and sets the transparent colour to red, assuming red is present

in the frame colour table. When the colour index is known it can be used directly:

Gif.TransparentColor(0) = 180

TransparentColorString (Index) - String, read only. This returns the colour that is

used as the transparent colour in the frame specified by Index. It is the value of the colour as a string.

RemoveTransparency - This method sets the transparent property of each frame to false.

Interlaced (Index) - Boolean. When true the frame specified by Index will be stored interlaced. This

should not be used with multiple frame GIFs and csASPGif will not interlace multiple frames during

export, regardless of this property value. Interlacing was traditionally used when images were

transmitted over slow connections. (Default = False).

Delay (Index) - Integer. The length of time the frame specified by Index will be displayed before

moving to the next frame. This is measured in 1/100ths of a second. (Default = 0)

Most web browsers will not show more than 10 frames per second, so when values of less than 10 are

used for Delay, the animation may run slower than expected. The same animation may run at the

correct speed when viewed in other image viewing software.

LoopCount - Integer. The number of times the entire animation will repeat. When this value is zero it

will repeat indefinitely. The maximum value is 65536. The first run through the animation is not

counted so setting LoopCount to 1 results in two complete iterations. (Default = 0).

HideLoopCount - Boolean. The data block inside the GIF that specifies the loop count can be

omitted if necessary by setting this property to true. Technically it is not a standard part of the GIF

format and was added by Netscape so that Netscape 2.0 could display animations, but most GIF readers

use it. Set HideLoopCount to true if only one pass through the animation is required. (Default = false).

DisposeMethod (Index) - Integer value 0 - 3. This property describes what should happen to the

frame specified by Index when the next image is displayed. The exact behaviour depends on the GIF

reader.

0 - Unspecified. This is usually interpreted in the same way as 1, No Disposal.

1 - No Disposal. The image remains in the display and will still be visible if the next image is

 smaller or offset. (Default)

2 - Restore Background. The image is removed and the background behind the GIF is

displayed.

3 - Restore Previous. This restores the display to whatever was there before the current frame.

The following properties are rarely supported by GIF readers and should not generally be used.

BackgroundColor - Integer. The colour to be displayed behind the GIF when frames do not fill the

logical screen, defined by the index within the Global Colour Table. Most GIF readers will show the

background as transparent instead of this colour. (Default = 0)

UserInput (Index) - Boolean. When true, the frame specified by Index will remain displayed until

some input is received from the user. (Default = false)

 18

7. Frame Optimisation

It is sometimes possible to reduce the file size of an animated GIF by either cropping some frames and

allowing the background to fill the remaining area, or by allowing some of the previous frame to show.

csASPGif provides an optimisation method called OptimizeFrames.

OptimizeFrames - This method will attempt to reduce the file size of an animated GIF

by cropping frames where possible and changing areas to transparent to allow the background or

previous frame to show through. A smaller frame will produce a smaller file size and increasing the

amount of a frame that is a uniform colour can improve compression.

If the GIF contains any local colour tables, these will be replaced with a global colour table. Any

previous optimisation will be removed. This is the equivalent of calling the OptimizeColorTables and

UnOptimize methods. There is no guarantee that OptimizeFrames will reduce the file size and if the

GIF already contained some optimisation it could even increase the file size.

UnOptimize - This method removes any previous optimisation. It will make each frame

the same size as the logical screen. Where the dispose method and transparency has been used to

generate an image made from one or more previous frames this will be copied to each frame.

UnOptimize can be used to display each frame as a stand alone image.

Both OptimizeFrames and UnOptimize can be time consuming to run and it might not be advisable to

use them when generating images "on the fly".

 19

8. Merging Images

External images can be merged with existing frames. This is simply sticking one image over another

although one of the colours of the foreground image can be transparent.

There are three merge commands, MergeFile, MergeData and MergeHandle which give three different

options for the format of the external image, either a file, a variant array, or a handle to a bitmap.

There are several properties that need to be set before calling a merge function. MergePalette specifies

what happens to the colour table of the frame. MergeReverse determines which image is the

foreground. TransparentMerge and TransparentMergeColor control the transparency during the merge

operation.

MergeFile X, Y, Index, FileName - This merges the GIF file at FileName with the frame specified

by Index. FileName is a string and must be a full physical path to a GIF file. The top left corner of the

foreground image is positioned at coordinates (X, Y) on the background image.

MergeData X, Y, Index, GIFData - This merges the GIF file stored in the variable GIFData with the

frame specified by Index. GIFData is a variant array in the same format as that read by ReadStream.

The top left corner of the foreground image is positioned at coordinates (X, Y) on the background

image.

MergeHandle X, Y, Index, Handle - This merges the image defined by the bitmap Handle with the

frame specified by Index. Handle is the handle to a bitmap such as is exported by the FrameHandle

function. The top left corner of the foreground image is positioned at coordinates (X, Y) on the

background image.

MergeReverse - Boolean. This property determines which image is the foreground during a merge.

By default MergeReverse is false and the frame image is the background and the external image is the

foreground. Setting MergeReverse to true causes the external image to be the background.

TransparentMerge - Boolean. When true, the colour specified by TransparentMergeColor will be

transparent during a merge operation. (Default = false)

TransparentMergeColor - String hex colour value. This colour will be transparent during a merge

operation if TransparentMerge is true. It applies to the merge only and is unrelated to frame

transparency. (Default = "FFFFFF")

MergePalette - Integer value 0 - 2. This property determines what happens to the colour table during

a merge operation. Frequently the number of different colours involved in the merge is greater than the

size of the colour table so some compromise must be used.

0 - Combine the colour tables. A new colour table will be created from the two images and this will be

a Local Colour Table. HasLCT will be set to true for the frame merged.

1 - Existing. The merged frame will keep its colour table. (Default)

2 - New. The colour table for the external image will be adopted by the frame. HasLCT will be set to

true for the merged frame.

 20

9. Streaming an Image to the Browser

An active server page will return HTML output by default. An HTML page is formatted text which can

include spaces to display images. The images themselves are not part of the HTML but are separate

files, the location of which is specified inside the IMG tag. An ASP page can be an image if the

ContentType is set to "image/gif" and the binary data of the image is output using the

Response.BinaryWrite command. The ASP image is generated by placing the path to the script inside

the IMG tag.

For example, this page will display the image produced by "resize.asp":

<html>

<head><title>HTML page containing an image</title></head>

<body>

</body>

</html>

Resize.asp may look like this:

<%@ language=vbscript %>

<%

Response.Expires = 0

Response.Buffer = true

Response.Clear

Set Gif = Server.CreateObject("csASPGif.Gif")

Gif.ReadFile "C:\images\big.gif"

Gif.ScaleAll 25

Response.ContentType = "image/gif"

Response.BinaryWrite Gif.GIFData

%>

When the first HTML page is loaded it looks for the image at "resize.asp", runs the script and is sent a

stream of binary data in GIF format, so the browser displays the image. It is not possible to place the

BinaryWrite command inside the IMG tag to produce the image, it must be in a separate file.

If the line setting the ContentType is missing the image should still display in Internet Explorer but it

might not in other browsers. It is important to specify the correct ContentType to maintain

compatibility.

It is useful to know that parameters can be passed to the ASP image script using the URL string and

this can be read using Request.QueryString and used somewhere in the script

Example:

 21

10. Language Specific Issues

All the examples that are shown with the command descriptions use ASP and VBScript. The csASPGif

component is a COM object and can be used in most COM enabled environments running on a

Windows platform. We cannot begin to cover all the possible development environments here so

instead we concentrate on ASP and in this section we show the syntax for Cold Fusion and Visual

Basic.

10.1. Active Server Pages

ASP and VBScript is already covered in these instructions but the following points are worth noting.

Calls to methods (functions) do not use brackets, although from IIS 5 their use does not generate an

error. For example:

Gif.ReadFile "C:\images\a.gif"

These instructions show methods without brackets surrounding the parameters.

Properties with an input parameter do require brackets. Failure to include the brackets results in the

error "Object doesn't support this property or method". The correct syntax is:

Response.Write Gif.GCTEntry(0)

Assigning a property value requires an equals sign. Missing the equals sign also results in the error

"Object doesn't support this property or method". The correct syntax is:

Gif.HasGCT = true

10.1.1. ASP with Javascript

We don't provide any examples of using ASP with other scripting languages, other than VBScript. We

will mention the following about using Javascript with ASP.

Brackets are needed around function parameters.

The backslash character is used as an escape character in Javascript and two should be used together

when a backslash is needed:

Gif.ReadFile("C:\\images\\a.gif");

10.2. Cold Fusion

In Cold Fusion, a COM object is created using the <cfobject> tag:

<cfobject action="create" name="gif" class="csASPGif.Gif">

Each command must be placed inside a <cfset> tag and all method parameters must be enclosed by

brackets:

<cfset Gif.ReadFile("c:\images\big.gif")>

<cfset Gif.ScaleAll(25)>

<cfset Gif.WriteFile("c:\images\small.gif")>

Alternatively, the commands can be put inside a <cfscript> block:

<cfscript>

 22

Gif.ReadFile("c:\images\big.gif");

Gif.ScaleAll(25);

Gif.WriteFile("c:\images\small.gif");

</cfscript>

Cold Fusion version 5 does not support variant arrays and so the GIFData, ReadStream and

MergeData commands cannot be used. Without these commands, images cannot be streamed directly

to the browser so any dynamically produced image must be saved to a temporary file first and then

displayed using a <cfcontent> tag.

It is possible to stream images using Cold Fusion without saving to a temporary file first. The

following commands will stream an image assuming an image is loaded into a csASPGif object called

"Gif".

<cfscript>

Context = GetPageContext();

Context.SetFlushOutput(false);

Response = Context.GetResponse().GetResponse();

Out = Response.GetOutputStream();

Response.SetContentType("image/gif");

Out.Write(Gif.GIFData);

Out.Flush();

Response.Reset();

Out.Close();

</cfscript>

csASPGif can only be used with the 32 bit version of Cold Fusion. The 64 bit version of Cold Fusion

has no COM support.

10.3. Visual Basic

For best results import the csASPGif type library into VB by selecting "Project" from the menu bar,

then "References". The dialogue box will then show available type libraries. Scroll down to "csASPGif

Library", check the box and click OK. This will add the "Gif" class from csASPGif to the Object

Browser, making it available for early binding.

To create an instance of the object called "GifObj" use the following code:

Dim GifObj As Gif

Set GifObj = CreateObject("csASPGif.Gif")

Visual Basic 5 or 6 is a 32 bit application and so the 32 bit version of csASPGif must be used.

 23

11. Important Features of GIFs

Some knowledge of the GIF format is needed to be able to work with the csASPGif component. The

important features are summarised here.

11.1. Colours and Colour Tables

The GIF image format allows multiple images, called frames, to be stored in the same file. Usually this

is done to create an animation, usually for displaying on web pages. All the frames must be stored at

the same colour depth (the number of pixels per byte) and this can be up to a maximum of 8 bits, or

256 colours.

The frames use colours that are stored as an indexed palette or "colour table". The GIF may have a

Global Colour Table, which can be applied to some or all of the frames. Each frame may have a Local

Colour Table, or it can use the Global Colour Table. It is possible to have more than 256 colours in the

image but no more than 256 colours can be in any one frame. Each colour is an RGB triple with red,

green and blue components having values between 0 and 255.

If a small file size is required it is preferable to use the Global Colour Table for all the frames. When

the frames are small, having a Local Colour Table for each frame can add a significant size to the file.

11.2. Compression

The image data is compressed using a system that is most efficient over areas of continuous colour.

Simple shapes and areas filled with single colours compress very well. Photographic images and

images with a lot of different colours in a small area will not compress efficiently.

11.3. The Logical Screen and Frame Co-ordinates

The frames do not need to be the same size. A GIF has a "logical screen" and each frame is positioned

at co-ordinates measured from the left and top of this logical screen. During animation each frame has

a "dispose method" where it can be left in place with the next frame drawn on top, or it can be

removed. This means that an initial background frame could be drawn with smaller frames placed on

this background. This is another method that can be used for reducing the file size if only a small part

of an image is changed during animation.

11.4. Transparency

Each frame can have a transparent colour. It does not have to be the same colour in each frame.

Transparent pixels will be the colour of whatever is behind the GIF. In web pages this allows images to

blend into the background which is useful if they are to appear as an irregular shape.

11.5. Timing and Looping an Animation

In an animated GIF each frame has a delay time, specified in 1/100ths of a second, which is the time it

will display before being replaced by the next frame. This time can be slowed down if the computer

displaying the GIF is busy. It is possible to specify that the entire animation is to be repeated and this

can either be for a set number of loops or it can repeat indefinitely. This is an extension to the GIF

format sometimes called the Netscape 2.0 Application Extension, because it was introduced in the

Netscape 2 browser. It is not possible to repeat only part of the GIF.

 24

12. Revision History

The current version of csASPGif is 3.0.

The main changes since version 1.0 are described below.

New in Version 2.0:

OptimizeFrames method added to reduce final image sizes.

UnOptimize method added to allow the extraction of individual frames from optimised images.

ApplySmoothing property added to provide optional resampling on resize and rotate.

HasLocalColourTables and TransparentColorString properties added.

New in Version 3.0:

64 bit version released.

 25

13. Other Products From Chestysoft

Visit the Chestysoft web site for details of other COM objects.

ActiveX Controls

csXImage - An OCX control to display, edit and scan images.

csXGraph - An OCX control to draw pie charts, bar charts and line graphs.

ASP Components

csImageFile - Similar functionality to csXImage but in an ASP component.

csImageLite - A cut-down version of csImageFile for resizing and merging images.

csDrawGraph - Component to draw pie charts, bar charts and line graphs.

csASPUpload - Process file uploads through a browser.

csASPZipFile - Create zip files and control binary file downloads.

csFileDownload - Control file downloads with an ASP script.

csFTPQuick - ASP component to transfer files using FTP.

Web Hosting

We can offer ASP enabled web hosting with our components installed. Click for more details.

https://www.chestysoft.com/ximage/default.asp
https://www.chestysoft.com/xgraph/default.asp
https://www.chestysoft.com/imagefile/default.asp
https://www.chestysoft.com/imagelite/default.asp
https://www.chestysoft.com/drawgraph/default.asp
https://www.chestysoft.com/upload/default.asp
https://www.chestysoft.com/zipfile/default.asp
https://www.chestysoft.com/filedownload/default.asp
https://www.chestysoft.com/ftpquick/default.asp
https://www.chestysoft.com/hosting/default.asp

 26

14. Alphabetical List of Commands

Command Page no.

AddFrame 16
Antialias 13
ApplySmoothing 14
BackgroundColor 17
BrushColor 10
BrushStyle 10
ClearImage 11
ColorCount 9
ColorDepth 6
ColorIndex 7
ColorTableSize 6
CopyFrame 16
CopyGCTToLCT 6
CopyLCTToGCT 7
CopyLCTToLCT 7
CropAll 14
CropFrame 14
DefaultPalette 7
Delay 17
DeleteFrame 16
DisposeMethod 17
DrawArc 11
DrawChord 11
DrawEllipse 11
DrawLine 11
DrawPie 11
DrawPolygon 11
DrawRectangle 11
DrawRoundRect 11
DrawText 12
ExchangeFrames 16
ExtraColor 14
FillToBorder 13
FilterType 14
FindUnusedColor 9
FlipAllX 14
FlipAllY 15
FlipFrameX 15
FlipFrameY 15
FloodFill 13
FrameCount 16
FrameHandle 7
FrameHeight 16
FrameWidth 16
GCTEntry 8
GIFData 6
GIFFrameData 6
HasGCT 8
HasLCT 8
HasLocalColorTables 8
HideLoopCount 17
HTTPTimeout 7
HTTPUserAgent 7
ImageLeft 16
ImageTop 16
Interlaced 17

Command Page no.

LCTEntry 6
LoopCount 17
MergeData 19
MergeFile 19
MergeHandle 19
MergePalette 19
MergeReverse 19
OLEColorToStr 6
OptimizeColorTables 7
OptimizeFrames 18
PenColor 10
PenStyle 10
PenThickness 10
Pixel 12
PointAdd 11
ReadFile 5
ReadFrameFromFile 5
ReadFrameFromStream 6
ReadFrameFromURL 7
ReadStream 6
ReadURL 6
RemoveTransparency 17
ResizeAll 14
ResizeFrame 14
RotateAll 14
RotateFrame 14
ScaleAll 14
ScaleFrame 14
ScreenHeight 16
ScreenWidth 16
StrToOLEColor 8
TextAngle 12
TextBold 12
TextFont 12
TextHeight 13
TextItalic 12
TextJustify 12
TextRectX 13
TextRectY 13
TextSize 12
TextStrikeout 12
TextUnderline 12
TextWidth 13
TextWrap 13
Transparent 16
TransparentColor 16
TransparentColorString 17
TransparentMerge 19
TransparentMergeColor 19
UnOptimize 18
URLPassword 7
URLUsername 7
UserInput 17
Version 4
WriteFile 5
WriteFrameToFile 5

 27

	Using these Instructions
	1. Registering the Component and Getting Started
	1.1. Registration and Server Permissions
	1.2. Object Creation
	1.3. The Trial Version
	1.4. Using csASPGif with Component Services
	1.5. System Requirements

	2. Import and Export of GIFs and Individual Frames
	2.1. Reading and Writing Files From/To Disk
	2.2. Reading and Writing Files From/To a Variable
	2.3. Reading GIF Images from a Remote URL
	2.4. Exchanging GIF Frames with Other Controls

	3. Colours and Colour Tables
	3.1. Using Strings for Colours
	3.2. Colour Tables
	3.3. Colour Functions

	4. Drawing Shapes and Adding Text
	4.1. Pen and Brush Properties
	4.2. Clearing the Frame
	4.3. Shapes, Lines and Pixels
	4.4. Drawing Text
	4.4.1. Automatically Wrapping Text

	4.5. Filling Areas

	5. Image Manipulation (Resize, Rotate, Crop and Flip)
	6. Frame Properties and Animation
	7. Frame Optimisation
	8. Merging Images
	9. Streaming an Image to the Browser
	10. Language Specific Issues
	10.1. Active Server Pages
	10.1.1. ASP with Javascript

	10.2. Cold Fusion
	10.3. Visual Basic

	11. Important Features of GIFs
	11.1. Colours and Colour Tables
	11.2. Compression
	11.3. The Logical Screen and Frame Co-ordinates
	11.4. Transparency
	11.5. Timing and Looping an Animation

	12. Revision History
	13. Other Products From Chestysoft
	14. Alphabetical List of Commands

